Ngô Quốc Anh

Ngô Quốc Anh, Tiến sĩ
Văn phòng:
T3-305
Thư điện tử VNU:
nqanh@vnu.edu.vn
Trang web:
https://anhngq.wordpress.com
Lĩnh vực nghiên cứu:
Giải tích hình học và phương trình đạo hàm riêng
Quá trình đào tạo:
  • 2005-2007: Thạc sĩ, Đại học Quốc gia Hà Nội.
  • 2008-2013: Tiến sĩ, Đại học Quốc gia Xin-ga-po.

Công bố khoa học

  1. Ngô QAnh. On the sub poly-harmonic property for solutions of (-Δ)^p u <0 in R^n. Comptes Rendus Mathématique. 2017;355(5):526–532. doi:10.1016/j.crma.2017.04.003.
  2. Ngô QAnh, Nguyen VH. Sharp reversed Hardy-Littlewood-Sobolev inequality on R^n. Israel Journal of Mathematics. 2017;220(1):189-223. doi:10.1007/s11856-017-1515-x.
  3. Trịnh VDược, Ngô QAnh. On radial solutions of Δ²u + u^{-q} = 0 in R³ with exactly quadratic growth at infinity. Differential and Integral Equations. 2017;30(11/12):917-928.
  4. Ngô QAnh, Nguyen VH. Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space R_+^n. International Mathematics Research Notices. 2017;2017(20):6168-6186.
  5. Ngô QAnh. Einstein constraint equations on Riemannian manifolds. Trong: Geometric Analysis Around Scalar Curvatures. Geometric Analysis Around Scalar Curvatures. World Scientific; 2016:119-210. doi:10.1142/9789813100558_0003.
  6. Ngô QAnh, Zhang H. Prescribing Webster scalar curvature on CR manifolds of negative conformal invariants. Journal of Differential Equations. 2015;258:4443–4490. doi:10.1016/j.jde.2015.01.040.
  7. Ngô QAnh, Xu X. Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the null case. Communications in Mathematical Physics. 2015;334:193–222. doi:10.1007/s00220-014-2133-7.
  8. Gicquaud R, Ngô QAnh. A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small TT-tensor. Classical and Quantum Gravity. 2014;31:195014 (20pp). doi:10.1088/0264-9381/31/19/195014.
  9. Ngô QAnh, Xu X. Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds. Advances in Mathematics. 2012;230:2378–2415. doi:10.1016/j.aim.2012.04.007.